Redes de neuronas no oscilatorias: resonancias subumbral y generación de oscilaciones de red

Andrea Bel^{1,2}, Ana Torresi¹, Horacio G. Rotstein^{3,2}

 ¹Departamento de Matemática, Universidad Nacional del Sur,
 ²CONICET
 ³Federated Department of Biological Sciences, New Jersey Institute of Technology & Rutgers University, USA

Congreso A. Monteiro - 2023

$$\begin{split} C \; \frac{dV}{dt} \;\; &=\;\; I_{app} - I_L - I_j(x_j, V) - I_{syn} + I_{in}(t), \\ \frac{dx_j}{dt} \;\; &=\;\; \frac{x_{j,\infty}(V) - x_j}{\tau_{x_j}(V)}, \qquad j = 1,2 \end{split}$$

$$C \frac{dV}{dt} = I_{app} - I_L - I_j(x_j, V) - I_{syn} + I_{in}(t),$$

$$\frac{dx_j}{dt} = \frac{x_{j,\infty}(V) - x_j}{\tau_{x_j}(V)}, \qquad j = 1, 2$$

Corriente de fuga: $I_L = G_L(V - E_L)$

Canales iónicos: $I_j = G_j x_j (V - E_j)$

$$C \frac{dV}{dt} = I_{app} - I_L - I_j(x_j, V) - I_{syn} + I_{in}(t),$$

$$\frac{dx_j}{dt} = \frac{x_{j,\infty}(V) - x_j}{\tau_{x_j}(V)}, \qquad j = 1, 2$$

Corriente de fuga: $I_L = G_L(V - E_L)$

Canales iónicos: $I_j = G_j x_j (V - E_j)$

 $x_{j,\infty}$ es la función de activación /inactivación,

 $au_{\mathbf{x}_i}$ es la función de escala de tiempo

$$C \frac{dV}{dt} = I_{app} - I_L - I_j(x_j, V) - I_{syn} + I_{in}(t),$$

$$\frac{dx_j}{dt} = \frac{x_{j,\infty}(V) - x_j}{\tau_{x_j}(V)}, \qquad j = 1, 2$$

Corriente de fuga:
$$I_L = G_L(V - E_L)$$

Canales iónicos: $I_j = G_j x_j (V - E_j)$ $x_{j,\infty}$ es la función de activación /inactivación,

 $au_{\mathbf{x}_i}$ es la función de escala de tiempo

$$\frac{dv}{dt} = -g_L v - g w$$
$$\tau \frac{dw}{dt} = v - w$$

$$\frac{dv}{dt} = -g_L v - g w$$
$$\tau \frac{dw}{dt} = v - w$$

 g_L , g y τ son constantes que dependen de C, G_L , E_L , $G_{1,2}$, etc.

$$\frac{dv}{dt} = -g_L v - g w + I_{in}(t)$$

$$\tau \frac{dw}{dt} = v - w$$

 $I_{in}(t) = A_{in}\sin(\omega t)$

$$\frac{dv}{dt} = -g_L v - g w + I_{in}(t)$$

$$\tau \frac{dw}{dt} = v - w$$

 $I_{in}(t) = A_{in}\sin(\omega t) \implies v_{out}(t) = A_{out}\sin(\omega t - \phi), \quad \omega = \frac{2\pi f}{1000}$

$$\frac{dv}{dt} = -g_L v - g w + I_{in}(t)$$

$$\tau \frac{dw}{dt} = v - w$$

 $I_{in}(t) = A_{in}\sin(\omega t) \implies v_{out}(t) = A_{out}\sin(\omega t - \phi), \quad \omega = \frac{2\pi f}{1000}$

$$\frac{dv}{dt} = -g_L v - g w + I_{in}(t)$$

$$\tau \frac{dw}{dt} = v - w$$

$$I_{in}(t) = A_{in}\sin(\omega t) \implies v_{out}(t) = A_{out}\sin(\omega t - \phi), \quad \omega = \frac{2\pi f}{1000}$$

Resonancia: existe un máximo de la función de impedancia Z para algún valor positivo de la frecuencia f_{res} .

$$\frac{dv}{dt} = -g_L v - g w + I_{in}(t)$$

$$\tau \frac{dw}{dt} = v - w$$

$$I_{in}(t) = A_{in}\sin(\omega t) \implies v_{out}(t) = A_{out}\sin(\omega t - \phi), \quad \omega = \frac{2\pi f}{1000}$$

Resonancia: existe un máximo de la función de impedancia Z para algún valor positivo de la frecuencia f_{res} .

Resonador: neurona no oscilatoria que tiene resonancia

Conexiones graduadas

La conexión sináptica graduada del nodo j al k es modelada por

$$I_{syn,kj} = G_{syn,kj}S(v_j)(v_k - E_{syn,k})$$

Conexiones graduadas

La conexión sináptica graduada del nodo j al k es modelada por

$$I_{syn,kj} = G_{syn,kj}S(v_j)(v_k - E_{syn,k})$$

• $S_s(v) = \frac{1}{1 + e^{-\frac{v - v_{hif}}{v_{slp}}}}$ • $S_{pwl}(v) = \begin{cases} 0 & v < -v_a \\ \frac{v - v_a}{2v_a} & |v| < v_a \\ 1 & v > v_a \end{cases}$

Conexiones graduadas

La conexión sináptica graduada del nodo j al k es modelada por

$$I_{syn,kj} = G_{syn,kj}S(v_j)(v_k - E_{syn,k})$$

• $S_s(v) = \frac{1}{1 + e^{-\frac{v - v_{hif}}{v_{slp}}}}$ • $S_{pwl}(v) = \begin{cases} 0 & v < -v_a \\ \frac{v - v_a}{2v_a} & |v| < v_a \\ 1 & v > v_a \end{cases}$

Redes de uno y dos nodos

Si hay oscilaciones en la red:

¿Existe relación entre f_{res} y la frecuencia de oscilación?

Redes de uno y dos nodos

Si hay oscilaciones en la red:

¿Existe relación entre f_{res} y la frecuencia de oscilación?

Modelos auto-conectados

Modelos 2D/1D

Resonador con conexión auto-exitatoria

$$\begin{array}{rcl} & v' &=& -g_L v - g_1 w - G_{ex} S_s(v)(v - E_{ex}) \\ & \tau w' &=& v - w \end{array}$$

Resonador con conexión auto-exitatoria

$$\bigvee v' = -g_L v - g_1 w - G_{ex} S_s(v)(v - E_{ex})$$

$$\tau w' = v - w$$

2D aislado con $f_{nat}=0$ y $f_{res}\sim 17.6~(g_L=0.25,~g_1=1,~ au=100)$

¿Existe relación entre las dos frecuencias?

¿Existe relación entre las dos frecuencias?

¿Existe relación entre las dos frecuencias?

Dos nodos con conexiones inhibitorias

$$v_1' = -g_{L,1}v_1 - g w_1 - G_{in}S_s(v_2)(v_1 - E_{in})$$

$$\tau w_1' = v_1 - w_1$$

$$v_2' = -g_{L,2}v_2 - G_{in}S_s(v_1)(v_2 - E_{in})$$

Dos nodos con conexiones inhibitorias

$$\begin{array}{rcl} & v_1' &=& -g_{L,1}v_1 - g \, w_1 - G_{in}S_s(v_2)(v_1 - E_{in}) \\ & \tau \, w_1' &=& v_1 - w_1 \\ & v_2' &=& -g_{L,2}v_2 - G_{in}S_s(v_1)(v_2 - E_{in}) \end{array}$$

2D aislado $f_{nat}=0$ y $f_{res}\sim 10.4~(g_{L,1}=0.25,~g_1=0.25,~ au=100,~g_{L,2}=0.5)$

Mantenemos valores constantes de $g_{L,1}$ y de Z_{max} .

Mantenemos valores constantes de $g_{L,1}$ y de Z_{max} .

(b) $g_{L,1} = 0.1$, $Z_{max} = 6$

Mantenemos valores constantes de $g_{L,1}$ y de Z_{max} .

(b) $g_{L,1} = 0.1$, $Z_{max} = 6$

Mantenemos valores constantes de $g_{L,1}$ y de Z_{max} .

(b) $g_{L,1} = 0.1$, $Z_{max} = 6$

- Incrementando f_{res} crece f_{ntw}
- La banda de frecuencias activas es pequeña
- Las frecuencias activas dependen de g_{L,1} y de Z_{max}
- Amplitud crece al aumentar G_{in}

Definimos $\epsilon=1/\tau$ y escribimos

$$\begin{aligned} v_1' &= -g_{L,1}v_1 - g w_1 - G_{in}S_s(v_2)(v_1 - E_{in}) \\ v_2' &= -g_{L,2}v_2 - G_{in}S_s(v_1)(v_2 - E_{in}) \\ w_1' &= \epsilon(v_1 - w_1) \end{aligned}$$

Definimos $\epsilon = 1/ au$ y escribimos

$$\begin{aligned} v_1' &= -g_{L,1}v_1 - g w_1 - G_{in}S_s(v_2)(v_1 - E_{in}) \\ v_2' &= -g_{L,2}v_2 - G_{in}S_s(v_1)(v_2 - E_{in}) \\ w_1' &= \epsilon(v_1 - w_1) \end{aligned}$$

si $0 < \epsilon \ll 1$, v_1 y v_2 son variables rápidas y w_1 es lenta.

Definimos $\epsilon = 1/ au$ y escribimos

$$\begin{aligned} v_1' &= -g_{L,1}v_1 - g w_1 - G_{in}S_s(v_2)(v_1 - E_{in}) \\ v_2' &= -g_{L,2}v_2 - G_{in}S_s(v_1)(v_2 - E_{in}) \\ w_1' &= \epsilon(v_1 - w_1) \end{aligned}$$

si 0 < $\epsilon \ll 1$, v_1 y v_2 son variables rápidas y w_1 es lenta.

Subsistema rápido

$$\begin{array}{rcl} v_1' &=& f_1(v_1, v_2, w_1, G_{in}) \\ v_2' &=& f_2(v_1, v_2, G_{in}) \\ w_1' &=& 0 \end{array}$$

Oscilaciones de relajación

Variedad crítica

$$C = \{(v_1, v_2, w_1) \in \mathbb{R}^3 : v_1 \in \mathbb{R}, v_2 = p_2(v_1, G_{in}), w_1 = p_1(v_1, G_{in})\}$$
$$p_2(v_1, G_{in}) = \frac{G_{in}S_s(v_1)E_{in}}{g_{L,2} + G_{in}S_s(v_1)}$$
$$p_1(v_1, G_{in}) = -\frac{1}{g}(g_{L,1}v_1 + G_{in}S_s(p_2(v_1, G_{in}))(v_1 - E_{in}))$$

En cada punto de C se calcula la linealización del subsistema y se determinan los puntos singulares de C, las ramas que atraen (C_a) y las que repelen (C_r).

¿Valor de Gin crítico para explosión Canard?

• la existencia de bifurcación de Andronov-Hopf (subcrítica).

- la existencia de bifurcación de Andronov-Hopf (subcrítica).
- se analizan los puntos de inflexión de las soluciones en las proyecciones en los planos $v_1 w_1$ y $v_2 w_1$

- la existencia de bifurcación de Andronov-Hopf (subcrítica).
- se analizan los puntos de inflexión de las soluciones en las proyecciones en los planos $v_1 w_1$ y $v_2 w_1$

- la existencia de bifurcación de Andronov-Hopf (subcrítica).
- se analizan los puntos de inflexión de las soluciones en las proyecciones en los planos $v_1 w_1$ y $v_2 w_1$

 Mostramos que las oscilaciones en la red surgen de la interacción de las propiedades de cada neurona y de la conexión sináptica.

- Mostramos que las oscilaciones en la red surgen de la interacción de las propiedades de cada neurona y de la conexión sináptica.
- Existen oscilaciones en los casos:

- Mostramos que las oscilaciones en la red surgen de la interacción de las propiedades de cada neurona y de la conexión sináptica.
- Existen oscilaciones en los casos:

 Observamos que la frecuencia de oscilación de la red depende monótonamente de la frecuencia de resonancia.

- Mostramos que las oscilaciones en la red surgen de la interacción de las propiedades de cada neurona y de la conexión sináptica.
- Existen oscilaciones en los casos:

- Observamos que la frecuencia de oscilación de la red depende monótonamente de la frecuencia de resonancia.
- Oscilaciones de relajación: aproximamos valores críticos del parámetro para la explosión canard.

Bibliografía

- B. Hutcheon and Y. Yarom. *Trends in Neuroscience*, 23:216–222, 2000.
- Y. Manor and F. Nadim and S. Epstein and J. Ritt and E. Marder and N. Kopell *Journal of Neuroscience*, 19:2765–2779, 1999.
- M. Richardson, N. Brunel, and V. Hakim. Journal of Neurophysiology, 89:2538–2554, 2003.
- H. G. Rotstein.

Journal of Mathematical Neuroscience, 4:11:1-41, 2014.

📔 H. G. Rotstein and F. Nadim.

Journal of Computational Neuroscience, 37:9–28, 2013.

X. J. Wang and J. Rinzel.

Neural Computation, 4:84–97, 1992.

¡Muchas Gracias!